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Abstract. We calculate the dynamic structure factor in warm dense beryllium by

means of ab initio molecular dynamics simulations. The dynamic conductivity is

derived from the Kubo-Greenwood formula, and a Drude-like behaviour is observed.

The corresponding dielectric function is used to determine the dynamic structure

factor. Since the ab initio approach is so far only applicable for wavenumbers

k = 0, the k-dependence of the dielectric function is modelled via the Mermin

ansatz. We present results for the dielectric function and the dynamic structure

factor of warm dense beryllium and compare with perturbative treatments such as

the Born-Mermin approximation. We find considerable differences between the results

of these approaches which underlines the need for a first-principles determination of

the dynamic structure factor of warm dense matter.
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1. Introduction

A key issue of plasma diagnostics is the determination of plasma parameters as, e.g., the

free electron density and the temperature. This task is hampered in dense plasmas since

fundamental quantities such as cross sections, ionization state, and conductivities are

affected by strong correlations and quantum effects so that known simple approximations

are no longer applicable. Therefore, consistent many-particle approaches have to be

developed and checked by benchmarking experiments. A versatile and reliable tool

for this purpose is X-ray Thomson scattering (XRTS) [1, 2], which gains the plasma

parameters directly from the dynamic structure factor (DSF) [3]. X-rays penetrate dense

matter and intense X-ray sources are now available to perform scattering experiments.

For instance, intense X-ray pulses are produced either by energetic optical lasers or by

free-electron lasers in the soft or hard X-ray regime.

X-rays emitted from laser produced plasmas [4, 5] can probe the region of warm

dense matter (WDM) [6, 7] with temperatures of several eV and densities close to solid

density [8, 9, 10] up to compressed matter well above solid density, and at electron

temperatures of 0.1 eV and several 10 eV [11, 12, 13, 14]. Outstanding applications

of XRTS are, e.g., in-flight measurements of laser-driven implosion dynamics of inertial

confinement fusion capsules [15] and of radiative heating and cooling dynamics of matter

[16], both on ns time scales. Plasmas in the near-solid density regime have also been

probed by combining optical lasers (pump) and soft X-rays (probe) [17].

The plasma parameters electron temperature Te, free electron density ne, and the

mean ionization state Z can be derived by analyzing the XRTS signal. The electron

temperature can be inferred from the universal detailed balance relation, while the

electron density follows from the plasmon dispersion in the collective scattering mode

[8, 18, 19].

XRTS experiments have been performed on beryllium for different conditions

[8, 10, 12, 20]. It is a potential ablator material in inertial confinement fusion capsules

[21] and also relevant for astrophysics considering the neutrino capture reactions in the

Sun and the problem of neutrino oscillations [22]. In this paper we determine the DSF

for uncompressed beryllium (u-Be [10]: ρ = 1.85 g/cm3, Te = 12 eV) and threefold

compressed beryllium (c-Be [12]: ρ = 5.5 g/cm3, Te = 13 eV), thereby studying the

effect of strong correlations characterized by electron coupling parameters

Γe =
e2

4πε0kBTe

(
4πne

3

)1/3

≥ 1 , (1)

and the effect of degeneracy as relevant for electron degeneracy parameters

Θe =
2mekBTe

h̄2

(
3π2ne

)−2/3
≤ 1 . (2)

Theoretical efforts usually start with the implementation of the DSF as the basic

input for the Thomson scattering cross section on the level of the random phase

approximation (RPA) as it was shown in Ref. [9]. The influence of electron-ion

collisions on the DSF within the first Born approximation can be studied in addition
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based on the dynamic collision frequency ν(ω) [23]. A systematic improvement of the

Born approximation including dynamic screening, strong collisions and electron-electron

collsions has been accomplished as well [24, 25]. This treatment can be extended to finite

wavenumbers k by using the Mermin ansatz for the dielectric function [26, 27, 28] in

order to calculate the DSF at arbitrary k.

In this paper, we determine the DSF via ab initio simulations. This method

treats quantum and correlation effects beyond the RPA and perturbative treatments

and is, thus, suited to treat WDM. It has been demonstrated that ab initio results

for the equation of state [29, 30, 31] and the electrical and thermal conductivity of

various materials [32, 33] are in very good agreement with shock-wave experiments.

Here we use finite-temperature density functional theory molecular dynamics (FT-DFT-

MD) simulations to calculate the dynamic conductivity σ(ω) and, thus, the dynamic

collision frequency ν(ω). We find that the corresponding DSF for k = 0 derived from

the fluctuation-dissipation theorem agrees well with that obtained from the Mermin

dielectric function [26]. Assuming that the k dependence of the dielectric function

follows the Mermin ansatz, we calculate the DSF for arbitrary wavenumbers k. This

allows us to calculate the complete k and ω resolved structure factor using the FT-DFT-

MDmethod, whereas previous studies were limited to static or dynamic properties alone.

Finally, we compare our results with the Born-Mermin approximation (BMA).

The outline of the paper is as follows. We present the theory for the DSF in Sec. 2

and summarize details of the ab initio simulations in Sec. 3. There we give results for

the ion-ion pair distribution function, the respective structure factor, and the dynamic

conductivity of warm dense beryllium. Results for the dielectric function and the DSF

are presented in Sec. 4. Conclusions are drawn at the end of the paper.

2. Theory for the dynamic structure factor

We start with the scattered power per solid angle dΩ = sin θdθdϕ and per unit frequency

interval dω which is experimentally accessible and given by the following expression [3]:

d2Psc

dΩdω
=

σT

Arad

kf
ki

∫ ∞

−∞

dω′

2π
G∆ω(ω − ω′)

∫
d3r l(r)See(k, ω

′)ne(r) . (3)

Here, σT = 6.65× 10−24 cm2 is the Thomson scattering cross-section, ki and kf are the

initial and final photon wavenumbers, the energy and momentum transfer are given

by ∆E = h̄ω = h̄ωf − h̄ωi and h̄k = h̄kf − h̄ki. The central quantity for the

determination of the scattering signal is the DSF See(k, ω) which can be calculated for

given profiles of electron density ne(r), electron temperature Te(r), ion density ni(r), and

ion temperature Ti(r), i.e. for the general case of an inhomogeneous target. Therefore,

we consider in this paper only the DSF for simplicity. The momentum is related to

the scattering angle θ in the limit h̄ω � h̄ω0 according to k = 4π sin(θ/2)/λ0, with

λ0 being the probe wavelength. l(r) is the r-dependent power density of the probe

beam taking into account absorption in the target and Arad is the irradiated surface

of the target. The DSF has to be convoluted with the instrumental function G∆ω(ω)
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that models the spectrometer’s finite spectral resolution as well as the probe’s spectral

bandwidth. Usually, a normalized Gaussian distribution is employed with the full width

at half maximum ∆ω.

The DSF can be written in terms of free-free, bound-free, and bound-bound

correlations and contributions as proposed by Chihara [34, 35]. In the present paper,

we consider the contribution of free electrons S0
ee(k, ω) which is connected with the

longitudinal dielectric function ε(k, ω) via the fluctuation-dissipation theorem (FDT),

S0
ee(k, ω) = − ε0h̄k

2

πe2ne

Im ε−1(k, ω)

1− exp
(
− h̄ω

kBTe

) . (4)

Bound-bound correlations have to be studied to determine the elastic scattering signal

which is known as ion feature. The corresponding static structure factors have been

calculated for beryllium in Ref. [36]. Bound-free transitions are important for photon

energies that are much larger than the plasma frequency in beryllium, see Sec. 3. Both

contributions are subject of future work in order to compare with full experimental

scattering spectra.

Considering free electrons without interactions the dielectric function is given by

the RPA for the one-component plasma. Including interactions between the particles in

the plasma via the dynamic electron-ion collision frequency ν(ω) [28], the more general

approach of Mermin [26] can be applied for the dielectric function which then reads:

εM(k, ω)− 1 =

(
1 + iν(ω)

ω

)
[εRPA(k, ω + iν(ω))− 1]

1 + iν(ω)
ω

εRPA(k,ω+iν(ω))−1
εRPA(k,0)−1

. (5)

Calculating the electron-ion collision frequency in Born approximation defines the BMA,

see Refs. [18, 19, 23, 37]. A further improvement of the BMA is achieved by including

correlations between the electrons via local field corrections (LFC) G(k, ω) [38]. The

dielectric function in this BMA-LFC approach reads

ε(k, ω) = 1− 1− εRPA(k, ω)

1 +G(k, ω)[1− εRPA(k, ω)]
. (6)

For G(k, ω) we use the dynamic LFC as given by Ichimaru and Utsumi [39].

A further analysis of the DSF and the Thomson scattering process is possible via

the scattering parameter α = κ/k which relates the inverse screening length κ to the

wavenumber k. For α < 1 the scattering is non-collective and we can investigate short-

range correlations, while long-range correlations are relevant for collective scattering

(α > 1). In the case of long-range correlations the DSF S0
ee(k, ω) shows two particularly

pronounced side maxima which are located symmetrically relative to the central ion

feature. These peaks are directly related to the free electron density via the plasmon

frequency; see also [10, 18, 19].

3. FT-DFT-MD simulations

Another possibility to calculate the dielectric function is to perform ab initio simulations.

The FT-DFT-MD framework combines classical molecular dynamics simulations for the
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ions with a quantum treatment of the electrons based on FT-DFT [26, 40, 41]. We use

its implementation in the Vienna ab initio simulation package VASP 4.6.28 [42, 43, 44]

and the provided projector augmented wave [45, 46] all-electron pseudopotential for the

interaction between the nuclei and the electrons within the DFT. The exchange and

correlation term is approximated by the functional of Perdew, Burke, and Ernzerhof

[47] for all simulations. Convergence was checked with respect to the particle numbers

which vary between 32 and 256 atoms, the k-point sets used for the evaluation of the

Brillouin zone, and the energy cutoff for the plane wave basis set. With these results

the simulations were finally carried out with a particle number of 32 beryllium atoms

with 4 electrons each, an energy cutoff of 1400 eV, and a simulation time up to 20 ps.

The ion temperature was controlled with a Nosé thermostat [48]. The evaluation of the

Brillouin zone was done at the Baldereschi mean value point [49].

In order to demonstrate the power of the FT-DFT-MD simulations we have first

determined the equation of state and the ion-ion pair distribution function gii(r) of

warm dense beryllium for the parameters of the XRTS experiments, i.e. for u-Be [10]

and c-Be [12]. The respective static ion-ion structure factors Sii(k) were determined via

the Fourier transform of the ion-ion pair distribution functions as obtained from the

FT-DFT-MD simulations,

Sii(k) = 1 + ni

∫
gii(r)e

i~k~rd~r . (7)

The ion-ion pair distribution function and the ion-ion structure factor are shown in

Fig. 1 for u-Be and c-Be. An increase in density results in a stronger peak of the

ion-ion pair distribution function which is also shifted towards smaller distances due to

stronger correlation. The peak of the corresponding ion-ion structure factor is shifted

towards higher k values with increasing density and its height is more pronounced. Due

to the finite size of the simulation box, the structure factor cannot be determined for

small wavenumbers k. However, its starting point at k = 0 is given by the isothermal

compressibility which is calculated from corresponding equation of state data that were

derived from the FT-DFT-MD simulations as well. The results shown in Fig. 1 are in

agreement with earlier results [36] and can be used to determine the ion feature of the

XRTS spectrum, see Refs. [34, 35, 50, 51, 52]. We focus here on the electronic part of

the scattering spectrum.

Furthermore, we extract the electrical conductivity from the FT-DFT-MD

simulations which determines the dielectric function. The real part of the dynamic

conductivity σ(ω) is calculated via the Kubo-Greenwood formula [53, 54], see Refs. [31,

32, 33]. Evaluations are perfomed for 10 ion configurations (snapshots) from an

equilibrated MD simulation using Monkhorst-Pack k-point meshes [55] of 3 × 3 × 3

and a cutoff energy of 1400 eV; the average is performed subsequently. The imaginary

part of σ(ω) follows from a Kramers-Kronig relation, and the total dielectric function

is given by

Re ε(ω) = 1− 1

ε0ω
Imσ(ω) , (8)
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(a) (b)

Figure 1. Ion-ion pair distribution function gii(r) (a) and static structure factor Sii(k)

(b) for u-Be (black line: ρ = 1.85 g/cm3, T = 12 eV) and c-Be (red line: ρ = 5.5 g/cm3,

T = 13 eV). The values at k = 0 are calculated via the isothermal compressibility.

Im ε(ω) =
1

ε0ω
Reσ(ω) . (9)

The results for the dielectric function as obtained from the FT-DFT-MD simulations

are then used to determine the DSF via the FDT, Eq. (4).

The dynamic collision frequency ν(ω) is related to the dynamic conductivity σ(ω)

in the long-wavelength limit via a generalized Drude expression [24, 27],

σ(ω) =
ε0ω

2
pl

−iω + ν(ω)
, (10)

with the electron plasma frequency ω2
pl = nee

2/(ε0me). This allows us to relate the

electrical conductivity via the real part of the Drude formula, Eq. (10),

ReσD =
σ0

1 + ω2τ 2
, (11)

with σ0 as the static conductivity at ω = 0 and τ = 1/ν as the relaxation time.

Our numerical results for the dynamic conductivity are shown in Fig. 2. Both curves

show an almost perfect Drude-like behaviour for ω ≤ 80 eV (c-Be) and ω ≤ 90 eV (u-

Be), respectively. For larger energies, interband transitions from the K-shell become

relevant which are not considered in what follows because their threshold energy is

much larger than the plasma frequency. A static collision frequency, is sufficient to

describe this Drude-like behaviour of the dynamic conductivity according to Eq. (11).

The corresponding fit for u-Be yields a free electron density ne = 2.61 · 1023 cm−3,

an ionization degree Z = 2.105, an electron plasma frequency ωpl,e = 18.97 eV, and a

collision frequency ν = 9.71 eV. This corresponds to a coupling parameter Γe = 1.24 and

a degeneracy parameter Θe = 0.8. For c-Be we extract the values ne = 8.13 · 1023 cm−3,

Z = 2.21, ωpl,e = 33.48 eV, and ν = 19.12 eV which yields the plasma parameters

Γe = 1.68 and Θe = 0.4. The increase of the ionization degree due to compression

(Z = 2.105 → Z = 2.21) is small because the energy gap to the K-shell electrons is still

huge. In principle, the shift of the K-edge with density and temperature can be used

as diagnostic tool, see e.g. [56].
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This constant and real collision frequency contains the exchange and correlation

effects in warm dense beryllium as treated within DFT. The stronger correlations in

c-Be can be seen directly from the collision frequency which is doubled compared with

u-Be. Furthermore, we compare in Fig. 3 these collision frequencies for u-Be and c-Be

with the Born approximation with respect to a statically screened potential which is used

in the BMA. The DFT results for the real part are higher than the Born approximation

by a factor of more than 7 (u-Be) and 23 (c-Be) while no imaginary parts occur. The

impact of these substantially different results on the dielectric function and the DSF

will be discussed in the next section.

Figure 2. Dynamic conductivity for u-Be (black line: ρ = 1.85 g/cm3, T = 12 eV)

and c-Be (red line: ρ = 5.5 g/cm3, T = 13 eV). Above a photon energy of 80 eV (c-

Be) and 90 eV (u-Be) the K-shell electrons are excited. For lower energies, an almost

perfect Drude-like behaviour (dotted lines) is observed.

(a) (b)

Figure 3. Dynamic collision frequency for u-Be and c-Be: real parts (a), imaginary

parts (b). We compare the DFT results derived from the dynamic conductivity (Fig. 2)

within the Drude model, Eq. (10), with the first Born approximation used in the

Mermin dielectric function, Eq. (5).
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4. Results for the dielectric function and the DSF

The dielectric function can be used to determine the DSF via the FDT, Eq. (4).

Until now the FT-DFT-MD simulations are only possible for k = 0, i.e. in the long-

wavelength limit. To extend these calculations also to finite wavenumbers k > 0, i.e. to

compare with XRTS experiments at given scattering angles, we apply again the Mermin

ansatz, Eq. (5), and calculate the dielectric function with the collision frequency as

derived from FT-DFT-MD simulations for k = 0. In the following we call this method

Mermin approximation with ab initio collision frequencies (MA-AICF), in contrast to

the perturbative treatment of collisions in the Born-Mermin approximation (BMA).

We check the performance of this method in the long-wavelength limit where the ab

initio results for the dynamic conductivity shown in Fig. 2 yield the dielectric function

directly via Eqs. (8)-(9). Inserting this dielectric function into the FDT Eq. (4), the

DSF is determined for k = 0 solely based on first principles. This result (black line)

is compared in Fig. 4 with the BMA (green line) and the MA-AICF (red line) for

k → 0. Both approximations treat the k-dependence of the dielectric function via the

Mermin dielectric function Eq. (5), while collisions are considered perturbatively (Born

approximation: BMA) or ab initio (DFT: MA-AICF). For k → 0 the MA-AICF curve

agrees well with the first principles result. The plasmon peaks obtained in the BMA are

much sharper and located at slightly higher frequencies. In the following we apply the

MA-AICF also to finite wavenumbers k and compare with the BMA.

(a) (b)

Figure 4. DSF derived from the FDT (4) for u-Be (a) and c-Be (b) in the long-

wavelength limit k → 0 using the dielectric function from the FT-DFT-MD simulations

according to Eqs. (8)-(9) (black), the MA-AICF (red), and the BMA (green).

The real and imaginary part of the dielectric function are shown in Figs. 5 and 6

for u-Be and c-Be, respectively, for three scattering angles θ = 20◦, 40◦, and 60◦ and

a probe wavelength λ0 = 0.42 nm for u-Be and λ0 = 0.2 nm for c-Be. Overall, the

imaginary part describes the damping of plasma excitations and zeros in the real part

indicate collective motion of particles corresponding to plasma oscillations or plasmons.
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(a) (b)

Figure 5. Real (a) and imaginary part (b) of the dielectric function dependent

on the photon energy in units of the plasma frequency for u-Be (Te = 12 eV,

ne = 3.81 · 1023 cm−3) for three scattering angles θ = 20◦, 40◦, and 60◦: MA-AICF

(solid), BMA with LFC (dotted) and without LFC (dashed).

(a) (b)

Figure 6. Same as Fig. 5 but for c-Be (Te = 13 eV, ne = 8.13 · 1023 cm−3).

Both parts determine the DSF via the FDT, Eq. (4), according to

Im ε−1(k, ω) = − Im ε(k, ω)

[Re ε(k, ω)]2 + [Im ε(k, ω)]2
. (12)

Plasmons result from conditions where the real part of the dielectric function has zeros

or at least minima and, simultaneously, the imaginary part is small. Otherwise these

modes will be damped strongly. Furthermore, plasmons can be observed via XRTS in the

collective scattering regime, i.e. for α > 1; for a more detailed discussion, see [10, 19, 57].

Figs. 5 and 6 indicate that considerable deviations between the various approaches

to the dielectric function occur only for small angles θ or wavenumbers k, i.e. for

collective scattering α � 1. Furthermore, zeros in the real part are observed only

for u-Be at low scattering angles θ ≤ 20◦. For all other cases the real part has only

shallow minima which are shifted to higher frequencies. The consideration of LFC in

the BMA [38] shifts the zeros/minima slightly to smaller frequencies as compared with

the original BMA while the imaginary parts have more pronounced peaks. The MA-
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AICF shifts the zeros/minima further to smaller frequencies, but the imaginary parts

are smaller compared with both versions of the BMA. Furthermore, the peaks in both

the real and imaginary parts have a smaller width than the BMA. This behaviour can

be traced back to the much higher collision frequency in the MA-AICF, cf. Fig. 3, and

hence represents a correlation effect. These trends were already obtained by replacing

the RPA dielectric function with the BMA when calculating the DSF [19].

a) b)

Figure 7. Dynamic structure factor for different angles, plotted for u-Be (a) and c-Be

(b). We compare the MA-AICF (solid line) with the BMA with LFC (dotted line) and

without LFC (dashed line). Arrows mark the location of the plasmon peaks as derived

from XRTS experiments for u-Be at 40◦ [10] and for c-Be at 25◦ [12].

The corresponding DSF is displayed in Fig. 7 for different scattering angles θ = 20◦,

40◦, 60◦, and 90◦ and a probe wavelength λ0 = 0.42 nm for u-Be and λ0 = 0.2 nm for

c-Be. For a better illustration, we show only the redshifted left peak of the DSF. We

observe a pronounced broadening of the plasmon peak for all angles in the MA-AICF,

whereas the BMA with and without LFC shows such a behaviour only for larger angles

θ > 20◦. The position of the plasmon peak in the MA-AICF is shifted towards lower

frequencies relative to the BMA. For large scattering angles, both the MA-AICF and

the BMA-LFC yield almost the same location for the plasmon resonance.

First XRTS experiments have probed the collective scattering regime in warm dense

beryllium: at θ = 40◦ for u-Be [10] and at θ = 25◦ for c-Be [12]. The location of the

measured plasmon resonance is marked by arrows in Fig. 7. The MA-AICF result for

20◦ yields a very good agreement with the experimental point for c-Be. For u-Be the

plasmon shift of the MA-AICF is smaller than the experimental point and the BMA.

This indicates that the plasmon dispersion relation as predicted by the Mermin dielectric

function (which relies on the RPA dielectric function for collisionless plasmas, see Eq.

(5)) is modified for larger scattering angles θ or k values.

The different behaviour of the DSF can be analyzed further by checking sum rules

for the dielectric function used here,

〈ωl〉± =
∫ ∞

−∞

dω

π
ωl Im ε±1(k, ω) . (13)
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The f-sum rule 〈ω1〉− = −ω2
pl and the conductivity sum rule 〈ω1〉+ = ω2

pl are always

fulfilled. The third-moment sum rule via l = 3 tests the high-frequency behaviour of

the dielectric function. It is known that this sum rule is violated within a simple Drude

approach, i.e. assuming a constant collision frequency ν [24]. However, as we have shown

by our FT-DFT-MD simulations, the dynamic conductivity can be fitted very well by

a constant collision frequency for ω < 50 eV within the Drude model, cf. Figs. 2 and 3.

For an improved treatment of the high-frequency behaviour of the dielectric function we

have to consider bound-free transitions beyond the Drude approximation as can be seen

in Fig. 2. These contributions are usually described by an extra term in the Chihara

formula, see [34, 35].

5. Summary

We have calculated the dielectric function and the DSF for uncompressed and threefold

compressed beryllium based on FT-DFT-MD simulations. We find an almost perfect

Drude-like behaviour for the dynamic electrical conductivity. These ab initio results for

the respective collision frequency are then used to determine the dielectric function for

arbitrary wavenumbers k within the Mermin ansatz (5). Finally, we calculate the DSF

for various scattering angles and compare our results with a perturbative treatment of

collisions (BMA) [18] and with a generalization that considers also local-field corrections

(BMA-LFC) [38]. Considerable differences for the location of the plasmon resonance and

its width are observed. These predictions can be checked by first XRTS experiments that

have already probed the collective scattering regime in warm dense beryllium. We find a

very good agreement with the point for low-angle XRTS at 25◦ for c-Be [12]. The result

measured at a larger scattering angle of 40◦ for u-Be [10] indicates that the plasmon

dispersion relation as predicted by the Mermin dielectric function has to be modified.

The ab initio calculation of the plasmon dispersion relation and its measurement for

warm dense matter states via XRTS experiments is subject of future work.
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Wallace, G. Gregori, A. Höll, T. Bornath, R. Thiele, V. Schwarz, W.-D. Kraeft, and R. Redmer.

Observations of plasmons in warm dense matter. Phys. Rev. Lett., 98(6):065002, 2007.
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[28] A. Selchow, G. Röpke, A. Wierling, H. Reinholz, T. Pschiwul, and G. Zwicknagel. Dynamic

structure factor for a two-component model plasma. Phys. Rev. E, 64:056410, 2001.

[29] M. P. Desjarlais. Density-functional calculations of the liquid deuterium hugoniot, reshock, and

reverberation timing. Phys. Rev. B, 68:064204, 2003.

[30] A. Kietzmann, B. Holst, R. Redmer, M. P. Desjarlais, and T. R. Mattsson. Quantum molecular

dynamics simulations for the nonmetal-to-metal transition in fluid helium. Phys. Rev. Lett.,

98:190602, 2007.

[31] B. Holst, R. Redmer, and M. P. Desjarlais. Thermophysical properties of warm dense hydrogen

using quantum molecular dynamics simulations. Phys. Rev. B, 77(18):184201, 2008.

[32] M. P. Desjarlais, J. D. Kress, and L. A. Collins. Electrical conductivity for warm, dense aluminum

plasmas and liquids. Phys. Rev. E, 66:025401, 2002.

[33] B. Holst, M. French, and R. Redmer. Electronic transport coefficients from ab initio simulations

and application to dense liquid hydrogen. Phys. Rev. B, 83:235120, 2011.

[34] J. Chihara. Difference in x-ray scattering between metallic and non-metallic liquids due to

conduction electrons. J. Phys. F, 17(2):295, 1987.

[35] J. Chihara. Interaction of photons with plasmas and liquid metals - photoabsorption and

scattering. J. Phys.: Condens. Matter, 12(3):231, 2000.

[36] V. Schwarz, B. Holst, T. Bornath, C. Fortmann, W.-D. Kraeft, R. Thiele, R. Redmer, G. Gregori,
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